
19 

5. MALKIN I.G., Theory of the Stability of Motion, Nauka, Moscow, 1966. 
6. KAMENKOV G.V., Selected Papers, 2, Nauka, Moscow, 1972. 
7. ZHURAVLEV V.F. and KLIMOV D.M., Applied Methods in the Theory of Oscillations, Nauka, 

Moscow, 1988. 
8. BELETSKII V.V., The Motion of an Artificial Satellite Relative to its Centre of Mass in a 

Gravitational Field, Izd. Moskovsk..Gos. Univ. Moscow, 1975. 

Translated by E.L.S. 

J. AppZ. Maths Mechs, Vol. 55, No. 1, pp. 19-23, 1991 0021-8928/91 $15.00+0.00 
Printed in Great Britain 01992 Pergamon Press plc 

SLIPPING REGIMES IN MECHANICAL SYSTEMS* 

S.V. ZUBAREV 

Mechanical systems with non-bilateral kinematic constraints are 
considered. For such systems conditions are obtained for which their 
equations of motion, determined by methods from classical mechanics, 
convex underdetermination and equivalent control, are identical. 

Problems associated with methods of obtaining the equations of motion in slipping regimes, 
appearing in systems of differential equations with discontinuous right-hand sides, have been 
most thoroughly discussed in /l, 2/. From the point of view of classical mechanics, the 
appearance of such regimes amounts to imposing on a system of material points P,,(i= 1,2,.. ., NJ 
some non-bilateral relations sg (b = 1, 2, .( m) 

SR = ‘PO (t, r, r’). r = (Q, ., TN), r’ = (rl., ., rN’) (0.1) 
where r, and pi are respectively the position vectors and velocities of the points P,. 

In this context slipping motion corresponds to motion in which the constraints Sg become 
bilateral during certain modes of behaviour, i.e. Sg= 0. Then the right-hand sides of the 
dynamical equations for the points P, undergo discontinuities on the hypersurfaces SR = 0. 

Below we shall assume that when the links are bilateral (embedding), they are ideal. 
This assumption is natural for a wide class of mechanical systems, 

For example, 
/3/. 

such a situation occurs when Sg is a non-bilateral frictional constraint 
If the constraint (0.1) is ideal (in the above sense) and linear in the velocities, then 

to derive the equations of motion for the points PI of a constrained system one can apply 
Lagrange's method of undetermined multipliers (alternatively, the method of convex under- 
determination and equivalent control /l, 2/l. However, any one of these approaches in iso- 
lation may not give sufficient information for investigating the behaviour of such systems 
with variable structure. In particular, the Lagrange method, uniquely defining the slipping 
equations, does not, in general, establish their switching conditions, whereas the methods in 
/l, 2/, in principle giving conditions for the existence of singular regimes, in a range of 
cases do not guarantee the correctness of the derivation of the equations of motion when the 
constraints SR are bilateral. 

In connection with these and other problems there is the interesting problem of the con- 
sistency of the various methods of deriving equations of motions for slipping regimes for 
mechanical systems of variable structure within the framework of Newtonian mechanics. 

1. We will first consider a dynamical system of the form 
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Here m, is the mass of the i-th point and zi and .z,' are its three-dimensional coordi- 
nates and velocity. 

The differential constraint Sp (B = 1,2, . . ..m). considered as a scalar function of vari- 
ables x and z', is a surface of discontinuity for up (2, x'). If Sp # 0, Vfl = l,Z,...,m, then 
the right-hand sides of system (1.1) are active forces (alongside fsj). If one of the con- 
straints S,(r = 1,2, . . ..m) is included, then the corresponding b,,Ju, terms determine the 
reaction of the constraint S,. 

Below we shall use the following notation: 

(1.3) 

(where (.) denotes the scalar product). 
We shall write the equations of motion for the system with an imposed constraint S,'using 

Lagrange's method /4/ and the method of equivalent control /2/, which for system (1.1) leads 
to the same result as Filippov's method /l/z 

m&j -- = Fij’ (u) + I,$, (1.4) 

miqj" = Fij' (24) + biv'urea (1.5) 

Here 

A,= - 
a, (u) a7 (p) 

aI (4 4 1, 1) ’ 
u;q = - 

aTV,Lb,l) 

min (u,', Ur-) < u,eq < max (z&+,11,-) 

(1.6) 

(1.7) 

The functions Fijr (u), a, (u) and a, are given by (1.3) with T(U)= U. 
We note that it follows from relations (1.6) that h, and zkTeq are both either zero or 

non-zero. We shall not consider the trivial case when Eqs.(1.4) and (1.5) as identical 
when h, = u?eq = 0. 

It turns out that for Eqs.(1.4) and (1.5) to be identical it is necessary and sufficient 
for the system of equations 

to be satisfied. 

lri'bvrk = bi,jLv’, Vi, Y = 1, 2, . . ., N; j, k = 1, 2, 3 (1.8) 

Proof. Necessity. Suppose Eqs.Cl.4) and (1.5) are identical. Then h, and u,eq will 
satisfy the linear system of equations 

I,& - birju,eq = 0 (1.9) 

Because h, and u,q are non-zero by assumption, the rank of system (1.9) is less than 
two, from which we obtain condition (1.8). 

Sufficiency. Suppose relation (1.8) is satisfied. Taking any non-zero l,*j and b,,j 
and expressing all the b,, in (1.8) in terms of the remaining quantities, we substitute 
into the second equations of (1.6). We obtain 

uTeq = (1,,3/b,,j) h, 

This last relation leads to the equivalence of the right-hand sides of (1.4) and (1.5). 
Here and below it is assumed that 
meansurable in t, while lRij 

Fij and biBj are continuous in x and x', and Lebesgue- 
and Z&,v+lj are continuously differentiable in all their argu- 

ments. 
Remark. If some constraints 81% .V sz. z<m,m+3,v are imposed on system (l.l), then 
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in this case conditions (1.8) are also sufficient for the equivalence of the equations of 
motion obtained by these three methods. In order for motion to exist at the intersections of 
the discontinuity surfaces S,,...,S,, it is necessary (even for existence along each of them), 
for conditions (1.12) to be equivalence criteria for equations of slipping motion obtained by 
the various methods. For Z= m,m= 3N, the equations of slipping motion are the same for 
all bigj because in this case they are uniquely defined by the constraint equations. 

2. We consider the case of non-linear activation of discontinuous functions on the right- 
hand sides of the dynamic equations 

(2.1) 

with imposed constraints (1.2). The functions (pig' (u& are continuous in ~a. The equations 
of motion obtained using the Lagrange method with the constraint SB switched on have the 
form 

m,Xij"= Fij” [Cp (dl - lii’Ct, [(p (U)llU, (1, 1, I, 1) (2.2) 

It was noted in /2/ that the results of applying the methods of convex underdetermination 
and equivalent control to systems of the form (2.1) do not, in general, coincide, and to 
ensure the correctness of the derivation of the slipping equations additional information is 
necessary on the nature of the object under investigation. Eqs.(2.2) can provide this in- 
formation for the case under consideration. 

We will compare (2.2) with the system obtained by the method of convex underdetermination. 
Applying the standard Filippov technique, after reduction we obtain 

(2.3) 

Here it is assumed that Aq,,j# 0. Comparing the right-hand sides of systems (2.2) and 
(2.3) with the arbitrary active forces Fil, we obtain the system 

lr:ar (1, 1, b, Acp) - b,,jAqi,ja, (2, 1, 1, 1) = 0 (2.4) 
i = 1, 2, . . ., N; j = 1, 2, 3; r = 1, 2, . . ., m 

Assuming that a,(l, 1, b, Acp)# 0 and a, (I, 1, i, I) # 0, we obtain as before the relations 

l,~A&b:,. - l:,,Avi,jbi,j = 0 (2.5) 

We further equate the right-hand sides of systems (2.2) and (2.3) and substitute into 
this equality for the quantity bvrR using the remaining quantities in expression (2.5). 
With the natural requirement that l,ij and (Pi? do not depend on the mass parameters, we 
finally obtain 

q,,"i =O YV (2.6) 

Thus (2.5) and (2.6) are the conditions for the equivalence of the slipping equations 
obtained by the Lagrange and convex underdetermination methods. 

Conditions for the equivalence of slipping equations obtained by the three specified 
methods can be written in the form 

where the n,eq are determined as in /2/. 

ExcmpZe . 

(2.7) 

(2.8) 

If (2.8) is interpreted as the mechanical system with "dry" friction shown in the figure, 
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then 

(2.9) 

can be any odd functions with limiting values identical with the limiting values 

of l&b. Here cl and c, are the respective rigidities of the springs, g is the acceleration 
due to gravity, and k, and kz are the frictional coefficients. 

If ~'B$(uB) = U,,Vl, 6 = 1,2, then the equations of motion 
obtained with the inclusion of any constraint Ss will be 
identical for all three methods, because condition (1.3) is 
satisfied. 

Indeed, 

I,*%*$ = 0, I,*%,, .= 0, .--j l,,&,l = I&,,' 
b&2 = mzgkg, I.&& = mzgkz, =+ b&$ = bps’inl 

If the (p&(uB) are non-linear in "0 and satisfy conditions 
(2.9), then the equations of the slipping regimes obtained by 

the Lagrange and Filippov methods will also be identical, because conditions (2.5) and (2.6) 
are satisfied: 

Consequently, 

1 WfvA,. -- $,A&bt, 11-l Vr, i, v = 1.2 

The satisfaction of this condition follows directly from (2.9). As an example we will 
write out the equations of motion with the inclusion of the constraint S,=O, i.e. when 
the relative velocity of the masses ml and m, is zero: 

with conditions 

The method of 
constraint S,= 0 
conditions (2.9). 

equivalent control can lead to different dynamical equations when the 
is imposed and in the case of a non-linear dependence of qn,' on U% satisfying 
Suppose Tnll (us) = U, and cpl$ (us) = (Q. Then the equivalent control ugeq _. will satisfy the equation 

gk, (~2~)’ + (&ml) gk;duscq + Gl(m,m,) = 0 (2.11) 

On the other hand, according to (2.7) the quantity uleg should satisfy the relation 

Clearly, neither of these values for ueeq will satisfy Eq.(2.11) if the force character- 
istics of the system are not formally constrained by special relations characterizing the 
unstable state of the system. 

3. We shall show that conditions of type (1.8) also hold in the case when a mechanical 
system in which discontinuous functions occur linearly is written in generalized coordinates 
Pl? Qa9 * f .1 Pn- 

Suppose we have a mechanical system characterized by kinematic and potential energies T 
and V and acted upon by generalized forces 
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“p = 1 uB+* sb > O7 5 = i% Bpi (4 Pi’ + I18 (q) up-> s, < 0, 
p=1,2,...,m 

Then, following 15, 2/, we conclude that when some constraint S, 
equations of the slipping regime will have the form 

= 0 is included the 

(3.1) 

(3.2) 

.A, and ureq are found from (3.1) and (3.2) together with the equation S,'= 0. As above, it 
can be shown that for Eqs.(3.1) and (3.2) to be identical the conditions 

BTibi, = Brlbir, Vi, j = 1, 2, . . ., n (3.3) 

are necessary. 
We shall show their sufficiency. Write systems (3.1) and (3.2) in the expanded form 

(3.4) 

(3.5) 

where the Pi depend only on q,q’ andt. 
From (3.4), (3.6) and (3.5), (3.6) we find 

(3.6) 

(3.7) 

(3.8) 

where the A, are the cofactors of the elements aij. 

Using relations (3.3) we express all the b,, in terms of the remaining quantities and 
substitute into Eqs.(3.8). We obtain the result 

which leads to the equivalence 

1. 

2. 
3. 
4. 
5. 

FILIPPOV A-F., Differential 
1985. 

uTeq = (B,Jb,,) h, 

of Eqs.(3.1) and (3.2). 
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